
Website: http://home.hccnet.nl/anij/nof/noforth.html

january 2026

Documentation

noForth m , noForth r and noForth t

noForth m is for MSP430, runs in ROM, 1 cell is 16 bits.
noForth r is for RISC-V, runs in ROM, 1 cell is 32 bits.
noForth t is for RP2040, runs in RAM, 1 cell is 32 bits.

When we use the word ROM it may be Flash ROM or FRAM.

 Until now we have the following noForth variants:

m mv mc mcv
r rv rc rcv
t tv t# tv# (solo or duo)

 m = for MSP430
 r = for RISC-V
 t = for RP2040

 c = compact
 v = with vocabularies
only for RP2040:
 # = with multitasker
 solo = noForth on core 0
 duo = a noForth on both cores

 "Low Power" noForths for MSP430 are marked with a dash:

 m- mv- mc- mcv-

The priorities for noForth are: 1. robust and comfortable, 2. fast, 3. compact.
For the compact variants: 1. robust and comfortable, 2. compact, 3. fast.

The noforth images contain only the noForth kernel. For the words .S WORDS MANY DMP and SEE include
the file <noforth m tools.f>, <noforth r tools.f> or <noforth t tools.f>.

Fetches and stores (when not bytewise) need aligned addresses. No warning appears.

noForth is case insensitive.

http://home.hccnet.nl/anij/nof/noforth.html

 Standard words are not documented here.

(*
><
@+
?ABORT
ADR
APP
ARSHIFT
B+B
B-B
BASE?
BEYOND
BIA
*BIC
**BIC
*BIS
**BIS
BIT*
BIT**
BIX
*BIX
**BIX
BL-WORD
BN
BOUNDS
CELL
CELL-
CH
CHERE
COLD
COLD2
DAS
>DIG
DIG?
DIVE
DM
DMP
DN
?DNEGATE

D.STR
DU.
DU.STR
DU*S
DU/S
DU2/
'EMIT
?EXIT
EXTRA
FLYER
FOR
FRESH
FREEZE
FREEZE2
FROZEN
H!
H@
H@+
H+H
H-H
HOR
HOT
HX
IB
#IB
>IN?
INCR
INSIDE
IVECS
IWORDS
'KEY
'KEY?
LFA>
LFA>N
M,
MANY
MDAS

MSEE
NEXT
?NEGATE
NOFORTH\
OK
?PAIR
PLACE
R0
RDROP
ROM!
ROMC!
ROMH!
ROMMOVE
ROUTINE
RTYPE
S<>
S0
SCAN
SEE
SHIELD
SKIP
STATE?
TIB
TIB/
+TO
UMAX
UMIN
UPPER
V:
VALUE
VEC!
VER
.VOC
X!
X@
XC!
XC@

Chapters

1. noForth m|r|t

2. C and v variants

3. Parsing

4. Memory layout

5. Utilities

6. Prefixes, Number input

7. Values, more prefixes

8. System values

9. Program flow

10. For-Next

11. Bit manipulation

12. ROM / RAM

13. Strings

14. Double numbers

15. Interrupt vectors

16. Extended memory (MSP430)

17. Miscellaneous

18. Error messages

noForth t runs in RAM. All documentation on this page about compiling in ROM is not valid for noForth t, so
there is no CHERE ROM! ROMC! etc.

file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini
file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini
file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini
file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini

1. noForth m|r|t

Differences between noForth m, noForth r and noFort t

• noForth m is a 16 bits forth.
• The following words are not in noForth m :

H! H@ H@+ ROMH!
[IF] [ELSE] [THEN]
2ROT -ROT -2ROT 2TUCK ARSHIFT
RECURSE
SM/REM
PLACE (a1 n a2 --) \ Write string a1,n to a2 as counted string.

You find the noForth m code for these words in the file <noforth m more words.f>.

⇧

2. C and v variants

Conditional compiling:

V: (immediate) is a NOOP in a noForth v variant, in a noForth without vocabularies it is a backslash.

Only in noForth with vocabularies:

EXTRA is a vocabulary with non-standard useful words.
INSIDE is a vocabulary with internal words.

: FRESH (--) only extra also forth also definitions ;
fresh order ↩ (FORTH FORTH EXTRA ONLY : FORTH)

When noForth starts, FRESH is executed.
.VOC (wid --) \ Show the vocabulary name. 'wid' is a number in 0..127

Only in noForth without vocabularies:

IWORDS shows the hidden auxiliary words.
WORDS shows all words except the hidden words. All words can be found normally.

⇧

3. Parsing
BL-WORD (-- adr) \ Execute BL WORD with automatic refill.
BEYOND (char --) \ Ignore input stream (using refill) until 'char' is found. Used in '('.

: ((--) ch) beyond ; immediate

(* \ Multi line comment until *)
*) must be the first word on a line!

⇧

4. Memory layout

FROZEN → HOT

FROZEN is the address in Flash where noForth system data is stored.
When noForth starts, this data is copied to RAM at address HOT where noForth can use it and change it.

HOT → FROZEN
FREEZE copies the actual RAM data to Flash. FREEZE defines how noForth comes back after a reset or

COLD .

COLD (--) \ Restart noForth.

Forgetting

SHIELD ('name' --) \ Similar to MARKER . The difference: a shield does not forget itself, a marker does.
The word NOFORTH\ is such a shield; when you execute it, all definitions after NOFORTH\ are gone and only
the kernel plus the word NOFORTH\ is left.

MSP430 memory layout of noForth m

The addresses are not the same in all noForth m variants. The labels are forth words. Type the name to get the
address on the stack.

RAM

HOT \ warm system data + spaces allotted by programs
HERE \ actual start of ALLOTtable space and start of
 \ the circulair internal noForth buffer
 \ for BL-WORD S" FLYER and numberprinting
FHERE \ actual pointer in circulair buffer
TIB \ input buffer
TIB/ \ end of input buffer
S0 \ data stack (down)
R0 \ return stack and end of RAM

Flash ROM

ORIGIN \ start of dictionary
CHERE \ actual start of free dictionary space
IVECS \ one cell before the interrupt table
10000 \ Extended memory if present

Info block

FROZEN \ cold system data

RISC-V memory layout of noForth r

RAM

20000000 HOT \ start of warm system data (max 200 bytes)
 ... UHERE \ actual start of free Uspace
20000200 FLYBUF \ circulair FLYER buffer (400 bytes)
 ... FHERE \ actual pointer in FLYER buffer
20000600 FLYBUF/
20000680 S0 \ data stack (80 bytes down)
20000880 R0 \ return stack (200 bytes down)
20000880 TIB \ input buffer (80 bytes)
20000900 TIB/
20000900 SYSBUF \ TIDY buffer (400 bytes)
20000D00 SYSBUF/ \ start of ALLOTted RAM
 ... HERE \ actual start of free RAM space
20008000 RAMBORDER
20008000 end of RAM

Flash ROM

 0000 interrupt vectors
 0200 FROZEN \ cold system data (max 200 bytes)
 0400 ORIGIN \ start of dicionary
 ... CHERE \ start of free dictionary space
1F000 BORDER
20000 end of Flash ROM

RP2040 memory layout of noForth t

RAM

core 0 core 1
21000000 21020000 IVECS \ 48 vectors
210000D0 210200D0 IVECS/
210000D0 210200D0 HOT \ start of warm system data (limit=origin)
... UHERE \ actual start of free Uspace
21000200 21020200 ORIGIN \ the noForth dictionary starts here
... HERE \ start of free dictionary space
2101F800 2103F800 FLYBUF \ circulair FLYER buffer (1024 bytes)
... FP \ actual pointer in FLYER buffer
2101FC00 2103FC00 FLYBUF/
2101FE80 2103FE80 R0 \ return stack (640 bytes down)
2101FF80 2103FF80 S0 \ data stack (256 bytes down)
2101FF80 2103FF80 TIB \ input buffer (128 bytes)
21020000 21040000 TIB/
21020000 21040000 BORDER \ systems end
21040000 21040000 MEMTOP \ end of RAM

XRAM External RAM block (Used for multitasker background tasks)

20040000 20041000 \ Start XRAM
20041000 20042000 \ End XRAM

Flash

000000 \ secundairy boot code (max. FC bytes)
(1)0000000 FROZEN \ saved noForth image nr # 1
(1)0041000 FROZEN2 \ saved noForth image nr # 2
085000 \ Free Flash ROM memory
200000 \ End of Flash ROM memory (max 1000000)

5. Utilities
These 5 commands print only one line. Press space bar for next line, press [enter] to leave. Also: press a
number key (n=0,1,..9) to display n*4 lines.
SEE ('name' --) \ Decompile, starting at the CF of 'name'.
MSEE (addr --) \ Decompile, starting at addr.
DAS ('name' --) \ Disassemble, starting at the address in the CFA of 'name'.
MDAS (addr --) \ Disassemble, starting at addr.
DMP (addr --) \ A 'dump' that needs only a start address, no count.

MANY (--) \ Restart interpretation of the actual input buffer until a key is pressed.
Example:

bl hex ↩ OK
dup emit dup . 1+ many ↩ 20 !21 "22 #23 $24 etc.

These utility words are not in the noForth kernel. They are in the files <noforth m tools.f>, <noforth r tools.f>
or <noforth t tools.f>. together with .S WORDS and DMP.
The disassembler is in the files <noforth m das.f>, <noforth r das.f> or <noforth t das.f>.

⇧

6. Prefixes, Number input

Prefixes

Prefixes are incomplete words. They become a complete word in combination with the immediately
following word or text in the input stream. Prefixes are input tools. They read the input stream, both
compiling and interpreting. They are not compiled.

Base prefixes
HX DM and BN cause a temporary base-change only while the next word in the input stream is being

executed or compiled.

hx 10 . ↩ 16 OK
: HUNDRED hx 64 ;
hundred . ↩ 100 OK

These prefixes are made to be used before numbers, but you can also use them interactively before other
words. If those words do number output, it will be in the prefixed base.

10 hx . ↩ A OK
' noforth hx dmp ↩ ...

The following HX has no effect, because base is 16 only while '.' is compiled...

: HAHA hx . ;
10 haha ↩ 10 OK

Double number prefix

DN makes double number input possible, both compiling and interpreting

dn 13579753 d. ↩ 13579753 OK

A dot at the end is also possible:

13579753. d. ↩ 13579753 OK

Commas in numbers

Number input in noForth may contain commas for readability, noForth ignores them.

2,345 . ↩ 2345 OK
dn 13,579,753 d. ↩ 13579753 OK

Combining prefixes
Base prefixes can be used before DN

bn dn 1,1111,1111,1111,1111 hx d. ↩ 1FFFF OK

⇧

7. Values, more prefixes
A VALUE ('name' --) in a noForth that runs in ROM does not take an initial value from stack when it is
defined! It makes no sense to initialize RAM locations at compile time because after a power off/on the data
will be lost. Initialisation must be done by the program. This is not the case in noforth t .

value KM

Value prefixes TO TO TO TO +TO +TO +TO +TO INCR INCR INCR INCR ADRADRADRADR

3 to km km . ↩ 3 OK
4 +TO km km . ↩ 7 OK
INCR km km . ↩ 8 OK
ADR km @ . ↩ 8 OK

ADR makes it easy to access a value in assembler:

 #1 ADR km & sub

Character prefix

CH (<name> -- ...) is a character prefix and can be used always when the character immediately follows. It
puts the value of the first character of 'name' on stack; in definitions that value is compiled as a number.
When the character does not follow immediately: use CHAR .

ch A . ↩ 65 OK
: key dup ch ? = if ... ;

⇧

8. System values
IB (-- a) \ Address of actual input buffer. See also memory layout.
#IB (-- n) \ Length of actual input (contents)
APP (-- xt) \ Value, may be set by the user. Contains the token that will be executed at cold start before
QUIT is reached. The default token is ' NOOP
OK (-- x) \ Value, may be set by the user.

The lowest 3 bits determine how the prompt looks.
When bit 15 is set, noForth will communicate with ACK/NAK:

 ok hx 8000 or to ok (freeze)

ACK (06) → noForth is ready to receive a new line.
NAK (15) → noForth is ready to receive a new line (but there was an error).

The value HOR counts the number of characters sent by EMIT. After a CR it is set to zero.
Not in noForth m :

The value VER counts the number of CRs sent by EMIT .
The standard variables STATE BASE and >IN also exist as values with the names STATE? BASE? and
>IN? . BASE? and TO BASE? do the same as BASE @ and BASE ! .

Versions from november 2025 or later no longer have STATE? BASE? and >IN? .

⇧

9. Program flow
?EXIT (flag --) \ short for IF EXIT THEN

?ABORT (flag --) \ If flag is not zero, the name of the word that has ?ABORT in it is printed.
Example:

: TEST (x --) 0= ?abort ;
0 test ↩ Msg from TEST \ Error # F25F

The error number = throw number = NFA of the word containing ?ABORT.
See Error messages.

DIVE (--) \ Swap Instruction Pointer with top of return stack; for coroutines.
Example:

: (.) ch (emit dive ch) emit ;
: .ML (x --) (.) . ." million" ;
67 .ml <enter> (67 million)

DIVE is used in FLYER.

FLYER is used in state smart words. FLYER handles the state-smartness of words in a uniform way. You need
to define the compile time action only.

: CCC FLYER ... ; immediate

When CCC executes:
0. In compile time FLYER is a no-op.
1. Executing: FLYER sets compilation state,
2. the rest of the definition is handled,
3. then state is set back to zero.
4. The just compiled code (in RAM) is executed.
5. The just compiled code (in RAM) is forgotten.

With FLYER and the word -FLY (not in noForth) you can loop interactively:

: -FLY 2r> r> 2>r >r ; immediate
CR FLYER TIB 9 FOR COUNT EMIT NEXT DROP -FLY

⇧

10. For-Next
For-Next needs only 1 cell on the return stack and is faster than Do-Loop.
(u) FOR .. NEXT \ loop u times with I counting down from u-1 to zero.
Code between FOR and NEXT is skipped when u = 0.
I (-- index) can be used with For-Next as well as with Do-Loop (I equals R@).

: 4x (--) 4 for i . next ;
4x [enter] 3 2 1 0 ok

LEAVE and UNLOOP function only with Do-Loop. Use RDROP or R> to leave a For-Next conditionally:

: ccc1 .. for .. key? if r> exit then .. next -1 ;

WHILE can be used with For-Next and Do-Loop:

: ccc2 .. do .. key? 0= while .. loop .. else .. unloop then .. ;
: ccc3 .. for .. key? 0= while .. next .. else .. rdrop then .. ;

NEXT is state-smart:
In a colon definition the NEXT of For-Next is compiled.

In assembler the NEXT of the inner interpreter is assembled.

⇧

11. Bit manipulation
**BIC (mask addr --) \ AND cell in addr with inverted mask
**BIS (mask addr --) \ OR cell in addr with mask
**BIX (mask addr --) \ XOR cell in addr with mask
BIT** (mask addr -- x) \ AND mask with cell in addr

The same words with one star operate on the lower half of a cell: *BIC *BIS *BIX BIT*

Avoiding name conflicts, only in noForth m (MSP) assembler:

BIA is the name for MSP430 assembler AND
BIX is the name for MSP430 assembler XOR

⇧

12. ROM / RAM (not for noForth t)
In noForth FRAM or Flash is treated as FROM.
HERE (-- a) \ RAMhere in data-space
ALLOT (n --) \ Reserve n byte at RAMhere
CHERE (-- a) \ ROMhere

! C! +! MOVE cannot be used with a ROM destination.
The words ROM! ROMC! ROMMOVE do exist, but you should not need them.
Use , C, M, instead.
M, (multi-c, or memory,) is a noForth word for the MOVE to ROM function:

: M, (a n --) for count c, next ; \ Compile the string a,n at CHERE

Constant string to ROM? Use the comma-words

create LOGO1
s" noForth" dup c, M, align
logo1 count type ↩ noForth OK

Changeable string to RAM? Use ALLOTALLOTALLOTALLOT

create LOGO2 10 allot
s" noForth" logo2 2dup c! 1+ swap move
\ or
s" noForth" logo2 place
logo2 count type ↩ noForth OK

Only for noForth r RISC-V

ROMH! (16b a --) \ write 16 bits to address a

Writing to Flash goes in portions of 16 bits, so ROMC! does not exist in noForth r. Yet C, is possible in
noForth r because sequential bytes are written pairwise. This means:
• C, and M, can be freely mixed but at the end an ALIGN is needed.
• The dictionary pointer CHERE is updated after each pair of bytes written, so it is never odd.

⇧

13. Strings
S<> (a1 n1 a2 n2 -- t|f) \ Compare strings, true → not equal
UPPER (a n --) \ Capitalize characters in string a,n in RAM

: RTYPE (a n r --) 2dup min - spaces type ;
: BOUNDS (addr len -- enda addr) over + swap ;

: SKIP (endaddr addr1 ch -- endaddr addr2) \ First char<>ch is at addr2.
: SCAN (endaddr addr1 ch -- endaddr addr2) \ First char=ch found at addr2.
When 'endaddr' = 'addr2' → Character is not found.
SKIP and SCAN are used in BL-WORD and PARSE

⇧

14. Double numbers
DU. (du --)
DU*S (du u -- dprod) \ Unsigned
DU/S (du u -- dquot rest) \ Unsigned, rest in tos!
DU2/ (du -- du/2) \ Logical drshift

Number>String
D.STR (dn -- adr len)
DU.STR (du -- adr len)

The string adr/len has a very short life. Parsing the next word will overwrite the string, so you can not use
these words interactively.

⇧

15. Interrupt vectors
ROUTINE starts the code definition for a interrupt routine or a subroutine. When executed it does not start

the routine but it puts the address of the routine on the stack, so you can use it for a call or put it in a vector.
Use 'return from interrupt' or 'return from subroutine' instead of NEXT.

routine INTERRUPT ..assembler code.. MRET/RETI end-code

VEC! (a ia --) \ Write vector into interrupt vector table.

a = address of interrupt routine, ia = location in interrupt vector table
Only for noForth m (MSP430):

IVECS (-- a) \ The address of the cell just below the vector table. It contains a return from interrupt.
Empty vectors should point to IVECS

⇧

16. Extended memory (MSP430)
Only for noForth m (MSP430)

X! (x da --) \ da = double number address
X@ (da -- x)
XC! (ch da --)
XC@ (da -- ch)

All noForth MSP430 FRAM versions with extended memory above FFFF provide these four commands.
These commands take a double number as address. Example:

hex 40 dn 12345 xc!

⇧

17. Miscellaneous

: CELL 1 cells ;
: CELL- 1 cells - ;
: @+ (a -- a+cell a@) dup cell+ swap @ ;
: ?PAIR (x y --) <> ?abort ;
: ?NEGATE (x y -- x2) 0< if negate then ;
: ?DNEGATE (dx y -- dx2) 0< if dnegate then ;

UMIN (u1 u2 -- u3) \ Unsigned MIN

UMAX (u1 u2 -- u3) \ Unsigned MAX

ARSHIFT (x n -- x2) \ Arihmetical rshift

RDROP (--) \ Short for R> DROP

LFA> (lfa -- cfa)

LFA>N (lfa -- nfa)

Number conversion

>DIG (n -- char)

DIG? (char base -- n true | char false)

Swap bytes
>< (x -- y) \ hex 1234 -- 3412

Join or separate parts of a cell

B+B (x y -- z) \ hex 12 34 -- 3412
B-B (z -- x y) \ hex 1234 -- 34 12

not in noForth m

H+H (x y -- z) \ hex 1234 5678 -- 56781234
H-H (z -- x y) \ hex 12345678 -- 5678 1234

⇧

18. Error messages

Msg from Msg from Msg from Msg from Meaning

?BASE Base is reset, was not in [2,42)

?COMP Only compiling

?COND Invalid condition (assembler)

?PAIR Unstructured code

?STACK Stack underflow or stack overflow

' Name not found

(* *) not found

>FHERE Not enough RAM space

ALLOT Data space full

UALLOT Udata space full

ALSO Search order overflow

BEYOND Could not refill

CHAR End of input stream

CHERE? Dictionary full

DIST Distance too large in control structure

DN Not a number

DST Invalid destination address (assembler)

DN Not a double number

HEADER Name length not in [1,32)

HX What's this?

INTERPRET What's this?

MPU Trying to write to protected memory

POSTPONE Name not found

PREVIOUS Only one vocabulary in search order

RECURSE RECURSE not possible after DOES>

ROM! Write action did not succeed

ROMC! Write action did not succeed

SET-ORDER Search order overflow

SRC Invalid source address (assembler)

STOP? Interrupted by user

THROW No catch-frame found

TO Prefix not accepted

VEC! Could not install interrupt vector

['] POSTPONE could not find name

⇧
