Website: http://home.hccnet.nl/anij/nof/noforth.html

noForth

january 2026

Documentation

noForth m , noForth r and noForth t

noForth m is for MSP430Q, runs in ROM, 1 cell is 16 bits.
noForth r is for RISC-V, runs in ROM, 1 cell is 32 bits.
noForth t is for RP2040, runs in RAM, 1 cell is 32 bits.

When we use the word ROM it may be Flash ROM or FRAM.

Until now we have the following noForth variants:

m mv mc mcv
r rv rc rcv
tv t# tv# (solo or duo)

m = for MSP430
r = for RISC-V
t = for RP2040
C = compact

with vocabularies
only for RP2040:
= with multitasker
solo = noForth on core 0
duo = a noForth on both cores

"Low Power" noForths for MSP430 are marked with a dash:
m- mv- mc- mcv-

The priorities for noForth are: 1. robust and comfortable, 2. fast, 3. compact.
For the compact variants: 1. robust and comfortable, 2. compact, 3. fast.

The noforth images contain only the noForth kernel. For the words .S WORDS MANY DMP and SEE include
the file <noforth m tools.f>, <noforth r tools.f> or <noforth t tools.f>.

Fetches and stores (when not bytewise) need aligned addresses. No warning appears.

noForth is case insensitive.

http://home.hccnet.nl/anij/nof/noforth.html

Standard words are not documented here.

(* D.STR MSEE Chapters

>< DU. NEXT

@+ DU.STR ?NEGATE 1. noForth mlr|t
7ABORT DU*S NOFORTH\

ADR DU/S 0K 2. Cand v variants
APP I')UZ/ ?PAIR 3. Parsing

ARSHIFT EMIT PLACE

B+B 7EXIT RO 4. Memory layout
B-B EXTRA RDROP o

BASE? FLYER ROM! 5. Utilities

BEYOND FOR ROMC! 6. Prefixes, Number input
BIA FRESH ROMH!

*BIC FREEZE ROMMOVE 7. Values, more prefixes
**BIC FREEZE?Z2 ROUTINE 8. System values
*BIS FROZEN RTYPE

**BIS H! S<> 9. Program flow
BIT* H@ SO

BIT** He+ SCAN 10. For-Next

BIX H+H SEE 11. Bit manipulation
*BIX H-H SHIELD

**¥BTX HOR SKIP 12. ROM /RAM
BL-WORD HOT STATE? 13. Strings

BN HX TIB

BOUNDS IB TIB/ 14. Double numbers
CELL #IB +T0

CELL- SIN? UMAX 15. Interrupt vectors
CH INCR UMIN 16. Extended memory (MSP430)
CHERE INSIDE UPPER

COLD IVECS V: 17. Miscellaneous
CoLD2 IWORDS VALUE 18. Error messages
DAS 'KEY VEC!

>DIG 'KEY? VER

DIG? LFA> .VOC

DIVE LFA>N X!

DM M, X@

DMP MANY XC!

DN MDAS XCe

7?DNEGATE

noForth t ' runs in RAM. All documentation on this page about compiling in ROM is not valid for noForth t, so
there is no CHERE ROM! ROMC! etc.

file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini
file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini
file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini
file:///Users/an/Desktop/---noforth%20t/algemeen/noforth%20documentation%20jan%202026.html#ini

1. noForthm|r|t

Differences between noForth m, noForth r and noFort t

* noForth m is a 16 bits forth.
* The following words are not in | noForth m :

(H!) (H@) (He+) (ROMH!)

[IF] [ELSE] [THEN]

2ROT -ROT -2ROT 2TUCK ARSHIFT

RECURSE

SM/REM

(PLACE) C a1 n a2 --) \ Writestring al,n to a2 as counted string.

You find the noForth m code for these words in the file <noforth m more words.f>.
i

2. C and v variants

Conditional compiling:
(V:) (immediate) is a NOOP in a noForth v variant, in a noForth without vocabularies it is a backslash.
Only in noForth with vocabularies:

(EXTRA) is a vocabulary with non-standard useful words.
(INSIDE) is a vocabulary with internal words.

: ([FRESH) (--) only extra also forth also definitions ;
fresh order ¢ (FORTH FORTH EXTRA ONLY : FORTH)

When noForth starts, FRESH is executed.
(.vOCJ (wid --) \ Show the vocabulary name. 'wid' is a number in 0..127

Only in noForth without vocabularies:

(IWORDS) shows the hidden auxiliary words.
WORDS shows all words except the hidden words. All words can be found normally.

i

3. Parsing

(BL-WORD) (-- adr) \ Execute BL WORD with automatic refill.
(BEYOND) (char --) \ Ignore input stream (using refill) until 'char' is found. Used in '('.

: @ (--) ch) beyond ; immediate

(C*) \ Multi line comment until *)
*3) must be the first word on a line!

iy

4. Memory layout

FROZEN — HOT

(FROZEN is the address in Flash where noForth system data is stored.
When noForth starts, this data is copied to RAM at address (HOT) where noForth can use it and change it.

HOT — FROZEN

(FREEZE) copies the actual RAM data to Flash. FREEZE defines how noForth comes back after a reset or
COLD .

(COLD) (--) \ Restart noForth. @

Forgetting

(SHIELD) ('name' --) \ Similar to MARKER . The difference: a shield does not forget itself, a marker does.

The word (NOFORTH\ | is such a shield; when you execute it, all definitions after NOFORTH\ are gone and only
the kernel plus the word NOFORTH\ is left.

MSP430 memory layout of noForth m

The addresses are not the same in all noForth m variants. The labels are forth words. Type the name to get the
address on the stack.

RAM
HOT \ warm system data + spaces allotted by programs
HERE \ actual start of ALLOTtable space and start of
\ the circulair internal noForth buffer
\ for BL-WORD S"™ FLYER and numberprinting
FHERE \ actual pointer in circulair buffer
TIB \ input buffer
TIB/ \ end of input buffer
SO \ data stack (down)
RO \ return stack and end of RAM
Flash ROM
ORIGIN \ start of dictionary
CHERE \ actual start of free dictionary space
IVECS \ one cell before the interrupt table
10000 \ Extended memory if present
Info block

FROZEN \ cold system data

RISC-V memory layout of noForth r

RAM
20000000 HOT \ start of warm system data (max 200 bytes)
... UHERE \ actual start of free Uspace
20000200 FLYBUF \ circulair FLYER buffer (400 bytes)
FHERE \ actual pointer in FLYER buffer

20000600 FLYBUF/
20000080 SO data stack (80 bytes down)
20000880 RO return stack (200 bytes down)
20000880 TIB \ input buffer (80 bytes)
20000900 TIB/
20000900 SYSBUF \ TIDY buffer (400 bytes)
20000D00d SYSBUF/ start of ALLOTted RAM

... HERE actual start of free RAM space
20008000 RAMBORDER
20008000 end of RAM

s 7

s 7

Flash ROM

0000 interrupt vectors

0200 FROZEN \ cold system data (max 200 bytes)
0400 ORIGIN \ start of dicionary
CHERE \ start of free dictionary space

1F000 BORDER
20000 end of Flash ROM

RP2040 memory layout of | noForth t
RAM

core 0 core 1
21000000 21020000 IVECS \ 48 vectors
210000D0 210200D0 IVECS/

21000000 210200D@ HOT \ start of warm system data (limit=origin)
. UHERE \ actual start of free Uspace

21000200 21020200 ORIGIN \ the noForth dictionary starts here
. HERE \ start of free dictionary space

2101F800 2103F800 FLYBUF \ circulair FLYER buffer (1024 bytes)
. FP \ actual pointer in FLYER buffer

2101FC0Q 2103FCO@® FLYBUF/
2101FE80 2103FE80 RO return stack (640 bytes down)
2101FF80 2103FF80 SO data stack (256 bytes down)
2101FF80 2103FF8@ TIB \ input buffer (128 bytes)
21020000 21040000 TIB/

21020000 21040000 BORDER \ systems end

21040000 21040000 MEMTOP \ end of RAM

s 7

XRAM External RAM block (Used for multitasker background tasks)

20040000 20041000 \ Start XRAM
20041000 20042000 \ End XRAM
Flash
000000 \ secundairy boot code (max. FC bytes)
(1)0000000 FROZEN \ saved noForth image nr # 1
(1)0041000 FROZEN2 \ saved noForth image nr # 2
085000 \ Free Flash ROM memory
200000 \ End of Flash ROM memory (max 1000000)

5. Utilities

These 5 commands print only one line. Press space bar for next line, press [enter] to leave. Also: press a
number key (n=0,1,..9) to display n*4 lines.

(@ ('name' --) \ Decompile, starting at the CF of 'name'.

MSEE) (addr --) \ Decompile, starting at addr.

(DAS) ('name' --) \ Disassemble, starting at the address in the CFA of 'name".

MDAS) (addr --) \ Disassemble, starting at addr.

DMP) (addr --) \ A 'dump' that needs only a start address, no count.

(MANY) (--) \ Restart interpretation of the actual input buffer until a key is pressed.
Example:

bl hex ¢ OK
dup emit dup . 1+ many < 20 !21 "22 #23 $24 etc.

These utility words are not in the noForth kernel. They are in the files <noforth m tools.f>, <noforth r tools.f>
or <noforth t tools.f>. together with .S WORDS and DMP.
The disassembler is in the files <noforth m das.f>, <noforth r das.f> or <noforth t das.f>.

iy

6. Prefixes, Number input

Prefixes

Prefixes are incomplete words. They become a complete word in combination with the immediately
following word or text in the input stream. Prefixes are input tools. They read the input stream, both
compiling and interpreting. They are not compiled.

Base prefixes

(HX) (DM) and (BN) cause a temporary base-change only while the next word in the input stream is being
executed or compiled.

hx 10 . ¢ 16 0K
: HUNDRED hx 64 ;
hundred . ¢ 100 OK

These prefixes are made to be used before numbers, but you can also use them interactively before other
words. If those words do number output, it will be in the prefixed base.

10 hx . « A OK
' noforth hx dmp e
The following HX has no effect, because base is 16 only while '." is compiled...
: HAHA hx . ;
10 haha < 10 OK

Double number prefix
(DN) makes double number input possible, both compiling and interpreting
dn 13579753 d. < 13579753 OK
A dot at the end is also possible:
13579753. d. < 13579753 OK
Commas in numbers
Number input in noForth may contain commas for readability, noForth ignores them.

2,345 . o 2345 0K
dn 13,579,753 d. < 13579753 0K

Combining prefixes
Base prefixes can be used before DN

bn dn 1,1111,1111,1111,1111 hx d. < 1FFFF OK

iy

7. Values, more prefixes

A (VALUE) ('name' --) in a noForth that runs in ROM does not take an initial value from stack when it is
defined! It makes no sense to initialize RAM locations at compile time because after a power off/on the data
will be lost. Initialisation must be done by the program. This is not the case in | noforth t .

value KM

Value prefixes TO +TO INCR ADR

3 to km km . e

4 (+T0) km km . e

3

7
(INCR) km km . ¢ 8 OK

8

(ADR] km @ . e

ADR makes it easy to access a value in assembler:
#1 [(ADR) km & sub

Character prefix

(CH) (<name> -- ...) is a character prefix and can be used always when the character immediately follows. It

puts the value of the first character of 'name' on stack; in definitions that value is compiled as a number.
When the character does not follow immediately: use CHAR .

ch A.e 65 OK
key dup ch ? =1if ... ;

iy

8. System values

(IB) (-- a) \ Address of actual input buffer. See also memory layout.

(#IB) (-- n) \ Length of actual input (contents)

(APP) (-- xt) \ Value, may be set by the user. Contains the token that will be executed at cold start before
QUIT is reached. The default token is ' NOOP

@ (--x) \ Value, may be set by the user.

The lowest 3 bits determine how the prompt looks.

When bit 15 is set, noForth will communicate with ACK/NAK:

ok hx 8000 or to ok (freeze)

ACK (06) = noForth is ready to receive a new line.
NAK (15) = noForth is ready to receive a new line (but there was an error).

The value [(HOR) counts the number of characters sent by EMIT. After a CR it is set to zero.
Not in noForth m :

The value (VER counts the number of CRs sent by EMIT
(ﬁ—BASELaﬁéJFQ—BA%ELde—HHﬂe—aS—BA%E@—aﬂd—BA%%L—

Versions from november 2025 or later no longer have STATE? BASE? and >IN? .

iy

9. Program flow

(?EXIT) (flag --) \ short for IF EXIT THEN

(?ABORT (flag --) \ If flag is not zero, the name of the word that has ?ABORT in it is printed.
Example:

: TEST (x --) 0= ?abort ;
@ test ¢ Msg from TEST \ Error # F25F

The error number = throw number = NFA of the word containing ?ABORT.
See Error messages.

(DIVE) (--) \ Swap Instruction Pointer with top of return stack; for coroutines.
Example:

: (.) ch (emit dive ch) emit ;
MO (Cx --) (C.) . ." million" ;
67 .ml <enter> (67 million)

DIVE is used in FLYER.

(FLYER is used in state smart words. FLYER handles the state-smartness of words in a uniform way. You need
to define the compile time action only.

: CCC FLYER ... ; immediate

When CCC executes:

0. In compile time FLYER is a no-op.

1. Executing: FLYER sets compilation state,

2. the rest of the definition is handled,

3. then state is set back to zero.

4. The just compiled code (in RAM) is executed.
5. The just compiled code (in RAM) is forgotten.

With FLYER and the word -FLY (not in noForth) you can loop interactively:

: -FLY 2r> r> 2>r >r ; immediate
CR FLYER TIB 9 FOR COUNT EMIT NEXT DROP -FLY

i

10. For-Next

11.

For-Next needs only 1 cell on the return stack and is faster than Do-Loop.

C u) (FOR) .. (NEXT)\ loop u times with I counting down from u-1 to zero.
Code between FOR and NEXT is skipped when u = 0.

I (--index) can be used with For-Next as well as with Do-Loop (I equals R@).

:4x (--) 4 for 1 . next ;
4x [enter] 3 21 0 ok

LEAVE and UNLOOP function only with Do-Loop. Use RDROP or R> to leave a For-Next conditionally:
: cccl .. for .. key? if r> exit then .. next -1 ;
WHILE can be used with For-Next and Do-Loop:

: ccc2 .. do .. key? 0= while .. loop .. else .. unloop then .. ;
: ccc3 .. for .. key? 0= while .. next .. else .. rdrop then .. ;

(NEXT) is state-smart:
In a colon definition the NEXT of For-Next is compiled.

In assembler the NEXT of the inner interpreter is assembled. @
i

Bit manipulation

(**BIC) (mask addr --) \ AND cell in addr with inverted mask
**BIS) (mask addr --) \ OR cell in addr with mask
**BTX | (mask addr --) \ XOR cell in addr with mask
(BIT**) (mask addr -- x) \ AND mask with cell in addr
The same words with one star operate on the lower half of a cell: (¥BIC) (*BIS) (*BIX) (BIT*)

Avoiding name conflicts, only in | noForth m ' (MSP) assembler:

(BIA) is the name for MSP430 assembler AND
(BIX) is the name for MSP430 assembler XOR

iy

12. ROM / RAM (not for noForth t)

In noForth FRAM or Flash is treated as FROM.
(HERE) (-- a) \ RAMhere in data-space
(ALLOT) (n --) \ Reserve n byte at RAMhere
(CHERE) (- a) \ ROMhere

I C!' +! MOVE cannot be used with a ROM destination.

The words (ROM!) (ROMC!) (ROMMOVE) do exist, but you should not need them.
Use , C, M, instead.

(I\m (multi-c, or memory,) is a noForth word for the MOVE to ROM function:

: M, Can --) for count c, next ; \ Compile the string a,n at CHERE

Constant string to ROM? Use the comma-words

create LOGO1
s" noForth" dup c, (M,) align
logol count type ¢ noForth OK

Changeable string to RAM? Use ALLOT

create LOGOZ2 10 allot
s" noForth" logo2 2dup c! 1+ swap move
\ or

s" noForth" logo2 place
logo2 count type ¢ noForth 0K

Only for | noForth r RISC-V

(ROMH!) (16b a --) \ write 16 bits to address a

Writing to Flash goes in portions of 16 bits, so [ROMC! | does not exist in noForth r. Yet C, is possible in

noForth r because sequential bytes are written pairwise. This means:
e C, and M, can be freely mixed but at the end an ALIGN is needed.
e The dictionary pointer CHERE is updated after each pair of bytes written, so it is never odd.

i)

13. Strings

(S<>) (al n1 a2 n2 --t|f) \ Compare strings, true = not equal
(UPPER) (a n --) \ Capitalize characters in string a,n in RAM

: (RTYPE) Ca n r --) 2dup min - spaces type ;
: (BOUNDS) (addr len -- enda addr) over + swap ;

: (SKIP)(endaddr addr1 ch -- endaddr addr2) \ First char<>ch is at addr2.
: [SCAN) (endaddr addr1 ch -- endaddr addr2) \ First char=ch found at addr2.

When 'endaddr' = 'addr2' = Character is not found.
SKIP and SCAN are used in BL-WORD and PARSE

iy

14. Double numbers

15.

16.

(bU.) (du --)

(DU*S) (du u -- dprod) \ Unsigned

(DU/S) (du u -- dquot rest) \ Unsigned, rest in tos!
DU2/) (du -- du/2) \ Logical drshift

Number>String

(D.STR) (dn -- adr len)
(DU.STR) (du -- adr len)

The string adr/len has a very short life. Parsing the next word will overwrite the string, so you can not use
these words interactively.

iy

Interrupt vectors

(ROUTINE) starts the code definition for a interrupt routine or a subroutine. When executed it does not start

the routine but it puts the address of the routine on the stack, so you can use it for a call or put it in a vector.
Use 'return from interrupt' or 'return from subroutine' instead of NEXT.

routine INTERRUPT ..assembler code.. MRET/RETI end-code

(VEC!) (aia--) \ Write vector into interrupt vector table.

a = address of interrupt routine, ia = location in interrupt vector table
Only for | noForth m ' (MSP430):

(IVECS) (-- a) \ The address of the cell just below the vector table. It contains a return from interrupt.
Empty vectors should point to IVECS

iy

Extended memory (MSP430)

Only for | noForth m | (MSP430)
Om (x da--)\ da = double number address

(@(da——x)
(XC!)(chda--)
(XC@) (da --ch)

All noForth MSP430 FRAM versions with extended memory above FFFF provide these four commands.
These commands take a double number as address. Example:

hex 40 dn 12345 (xc!

17. Miscellaneous

: (CELL 1 cells ;
: (CELL-) 1 cells - ;

: @ (a -- a+cell a@) dup cell+ swap @ ;
: (?PAIR (xy--) <> 7abort ;
: (?NEGATE) (xy -- x2) @< if negate then ;

: (?DNEGATE) (dx y -- dx2) 0< if dnegate then ;

(UMIN] (u1 u2 --u3) \ Unsigned MIN
(UMAX] (ul u2 --u3) \ Unsigned MAX
(ARSHIFT) (x n -- x2) \ Arihmetical rshift
(RDROP | (--) \ Short for R> DROP
(m (Ifa -- cfa)

(LFA>N (Ifa -- nfa)

Number conversion

(>DIG) (n -- char)

(DIG?] (char base -- n true | char false)

Swap bytes
(5><) (x - y) \ hex 1234 -- 3412

Join or separate parts of a cell

(B+B) (xy --z) \ hex 12 34 -- 3412
(B-BJ(z--xy)\ hex 1234 --3412

not in | noForth m

H+H) (xy --z) \ hex 1234 5678 -- 56781234
(H-H) (z --xy) \ hex 12345678 -- 5678 1234

i)

18. Error messages

Msg from

?BASE
?COMP
?COND
?PAIR
?STACK
(*
>FHERE
ALLOT
UALLOT
ALSO
BEYOND
CHAR
CHERE?
DIST

DN

DST

DN
HEADER
HX
INTERPRET
MPU
POSTPONE
PREVIOUS
RECURSE
ROM!
ROMC!
SET-ORDER
SRC
STOP?
THROW
TO

VEC!

L]

Meaning

Base is reset, was not in [2,42)

Only compiling

Invalid condition (assembler)
Unstructured code

Stack underflow or stack overflow
Name not found

*) not found

Not enough RAM space

Data space full

Udata space full

Search order overflow

Could not refill

End of input stream

Dictionary full

Distance too large in control structure
Not a number

Invalid destination address (assembler)
Not a double number

Name length not in [1,32)

What's this?

What's this?

Trying to write to protected memory
Name not found

Only one vocabulary in search order
RECURSE not possible after DOES>
Write action did not succeed

Write action did not succeed
Search order overflow

Invalid source address (assembler)
Interrupted by user

No catch-frame found

Prefix not accepted

Could not install interrupt vector
POSTPONE could not find name

*k >k

